google.com, pub-9722435618707273, DIRECT, f08c47fec0942fa0 Cайт юмора и развлечений (все для отдыха)
Всё о Психологии. Психолог и "Я"
Гость | RSS
   В избранное | Стартовая
»Меню сайта

»Спонсор
HashFlare
»Наш опрос
Как вы думаете, стоит развивать этот ресурс?
Всего ответов: 518
»Статистика

Яндекс цитирования
Онлайн всего: 2
Из них Гостей: 2
Пользователей: 0



Поздравляем иминиников

gerhyuonix(48), Fenermanz(50), swiceGowen(48), guagioky(42), ApesSkip(40), ansaharok(44), AaCaupfloulp(42), Pyncfooxy(44), unarnipiniord(44), teleweek(38), TimothyDiff(43), docxters(39), CalvinDek(40), DennisPaft(40), ChesterKi(50), LeonardCah(45), jennydx1(45), RichardElot(40), zlatovlaskann(38), CalvinEi(39), concettaux4(37), Tharne(48), Quintindut(45), JosephTulk(38), StephenNare(40), Theresahede(48), RichardVed(48), Williamhek(44), Albertmr(40), Alfredvot(39), [Полный список]
»Спонсор
Неплохой заработок в Интернете без обмана.
»Главная » Библиотека » Зоопсихология » Учебное издание » 17 - Зоопсихология

17 - Зоопсихология



17 - Зоопсихология

 

Различия в процессах обучения и памяти в связи с генетической изменчивостью строения мозга. В соответствии с традиционно приня­той в нейрофизиологии логикой исследований функциональную роль того или иного отдела мозга в формировании поведения обычно ана­лизировали путем оценки последствий его разрушения, а также элек­трической и/или фармакологической стимуляции.

К началу 70-х годов считалось установленным, что одна из функ­ций гиппокампа (рис. 9.2А) — мощное модулирующее влияние на процессы обучения, в частности торможение инструментальных ус-ловнорефлекторных реакций (Виноградова, 1975).

Американские исследователи Р. и Ц. Ваймеры и Т. Родерик выпол­нили исследование, в котором анализировалась роль генотипических особенностей в обеспечении функции гиппокампа. Способность мы­шей генетически гетерогенной популяции к обучению пассивной ре­акции избегания удара электрического тока (при однократном его применении) авторы сопоставили с общим объемом гиппокампа, который определяли после окончания экспериментов. Для этого на срезах мозга каждого животного, прошедшего тест на обучение, оп­ределили площадь, занимаемую гиппокампом, а затем в соответствии с существующими морфометрическими правилами вычислили его суммарный объем (Wimer et al., 1971).

в     Сопоставление результатов опытов с поведением и данными | подсчетов показало, что чем больше был размер гиппокампа, тем в эффективнее данное животное обучалось пассивному избеганию.

Коэффициенты корреляции достоверно свидетельствовали о том, что размер гиппокампа (а возможно, какого-то из его отделов) опре­деляет особенности выполнения выученного навыка (т.е. обучения как такового). Очень важно, что такая корреляция была получена в экспе­рименте без применения инвазивных методов, т.е. без прямого нару­шения целостности мозга. Кроме того, поскольку исследуемая попу­ляция мышей была генетически высокогетерогенной, можно было предположить, что обнаруженная скореллированная изменчивость обо­их признаков (размер гиппокампа и эффективность научения) по край­ней мере частично имела генетическую основу.

Морфометрические исследования (т.е. количественная оценка об­щих размеров) ряда отделов гиппокампа у мышей и крыс разных генотипов подтвердили существование достоверных межлинейных различий. Первоначально для анализа была выбрана условная реакция избегания в челночной камере (см. 3.2.2). Индивидуальную изменчи­вость темпов обучения этой реакции исследователи рассматривали как зависимую переменную (см.: Li рр etal., 1989; Schwegler, Lipp, 1995). В качестве независимой взяли вариабельность зоны окончания мшис-

282

Рис. 9.2. Роль размера проекционной зоны iipMF гиппокампа мышей в формировании пространственного навыка поиска пищи в радиаль­ном лабиринте.

А — схема строения гиппокампа; толстой стрелкой показана зона окончания iipMF; Б — слева: схема последовательных посещений мышью лучей радиаль­ного лабиринта, содержащих приманку, с небольшим числом повторных, ошибочных заходов; справа: график, отражающий зависимость между чис­лом ошибочных заходов на 5-й день теста у мышей ряда инбредных линий, различающихся (нижняя схема) по относительному размеру проекции iipMF, который отложен по оси абсцисс графика (по: Lipp, Wolfer. 1995).

тых волокон, аксонов гранулярных клеток зубчатой фасции гиппокампа на базальных дендритах пирамидных нейронов поля САЗ (рис. 9.2А). Мши­стые волокна оканчиваются в пирамидном слое поля САЗ крупными синаптическими бляшками. Зоны их окончаний формируют два чет­ких синаптических поля, т.е. две области проекции. Одна из них рас­полагается непосредственно над. пирамидными нейронами поля САЗ и называется супрапирамидным слоем. Вторая, меньшая по объему, рас­полагается ниже или внутри слоя пирамидных клеток. Эта область назы­вается слоем интра- и инфрапирамидных мшистых волокон, iipMF. Избирательная окраска именно этой структуры (метод Тимма) позво-пяет с высокой точностью определить ее размеры. У крыс Римских ли­ний (см. выше), резко различающихся по скорости формирования на­выка избегания удара тока, была выявлена отрицательная корреляция между площадью проекции мшистых волокон iipMF и способностью к обучению этой реакции. У мышей ряда инбредных линий, в том числе линий DBA/2J, СЗН/Не (размеры их зон проекций мшистых волокон схематически представлены на рис. 9.2Б справа), также была обнару­жена сильная и высокодостоверная отрицательная (-0,92) корреля­ция площади UpMFn показателей обучения в челночной камере. У гиб­ридов второго поколения от скрещивания этих линий корреляция мо­жет сохраниться только в случае, если ассоциация обоих признаков неслучайна. В эксперименте индивидуальная корреляция способности к обучению и площади iipMF у гибридов оказалась высокой.

Е     На большом и разнообразном экспериментальном материале | было показано, что крысы и мыши тем лучше обучаются данному в навыку, чем меньше у них площадь iipMF.

283

 

 Напомним, что выработка навыка избегания наказания в челноч­ной камере — это типично лабораторный тест, аналога которому в естественном поведении грызунов практически нет. Его отрицатель­ная корреляция с размером определенного отдела мозга еще ничего не говорит о функциональной значимости этой структуры. В этом от­ношении значительно больший интерес представляло исследование таких же корреляций в тестах, более адекватных экологической спе­циализации крыс и мышей.

Для выяснения участия генотипа в формировании когнитивных спо­собностей животных более информативными оказались данные о кор­реляции размера iipMF с успешностью формирования навыка обучения в радиальном лабиринте (см. 3.4.2.1), которое требует формирования про­странственных представлений (формирования «мысленного плана» ла­биринта, см. 3.4). В таких экспериментах была обнаружена достоверная положительная корреляция размера iipMF и обучаемости мышей про­странственному навыку (Schwegler, Lipp, 1995). На рис. 9.2Б слева по­казана схема перемещения мыши по радиальному лабиринту при реше­нии задачи, а также график зависимости успешности выполнения на­выка от размеров данной зоны синаптических окончаний. Под графиком схематически изображены размеры проекций мшистых волокон у мы­шей двух линий (см. выше). Выполнение теста Морриса (обучение в водном лабиринте, см. 3.4.2.2), точнее, «прочность» сформированной пространственной памяти, положительно коррелирует с размером iipMF (Schwegler, Lipp, 1995).

g     Тесты на способность к обучению на основе формирования представления о пространстве и о своем положении в нем живот­ные усваивают тем успешнее, чем больше у них размер проекции мшистых волокон гранулярных клеток на базальныхдендритах пи­рамидных нейронов поля САЗ гиппокампа.

Были проанализированы корреляции успешности выполнения «про­странственных» и непространственных тестов с размерами и других об­ластей гиппокампа (не только с iipMF), однако таких фенотипических корреляций с толщиной отдельных слоев гиппокампа в его разных уча­стках, т.е. с числом клеточных элементов и мощностью дендритных ство­лов пирамидных клеток, не обнаружено (Schwegler, Lipp, 1995).

|]     Итак, обнаруженные нейроморфологические и поведенческие корреляции дают основание утверждать, что данная область си­наптических окончаний (соединяющая гиппокамп с областью эн-торинальной коры и с новой корой) играет принципиально важ-ную, ключевую роль в осуществлении и/или модуляции процес-

li сов обучения разных типов.

Эти результаты были получены благодаря широкому использова­нию в лабораторных тестах генетически охарактеризованных живот-

284

ных, а также применению основных методов анализа генетических различий. В настоящее время исследование когнитивных способностей животных в этом тесте является одним из ведущих подходов в оценке особенностей поведения трансгенных животных и мышей-нокаутов. Детальнее с этими вопросами можно познакомиться в работе Lipp, Wolfer (1998), а также в материалах симпозиума «Behavioral Phenotyping of Mouse Mutants» (Cologne, 2000).

Использование трансгенных мышей при исследовании роли генотипа в процессах обучения и памяти. Методы генной инженерии и молеку­лярной биологии сделали возможным получение так называемых транс­генных животных. Как говорилось выше, такие исследования — это реализация подхода «от гена к поведению». Как правило, это физиоло­гический и биохимический анализ, а также исследование поведения искусственных мутантов, у которых был видоизменен определенный участок генома. Для их создания в геном животного (в настоящее время используются почти исключительно мыши) вводится новый генети­ческий материал. Таким материалом может быть или участок ДНК, ко­дирующий измененный ген, уже имеющийся у реципиента, ген от жи-ютного другого вида (например, крысы), либо генетическая конструк­ция, которая выключает какой-либо из генов реципиента (см.: Льюин, 1987; Jones, Mormede, 1999).

Выделенный фрагмент ДН К вводится в геном на ранней стадии эмбри­онального развития. С методами введения можно ознакомиться в специальных руководствах. В результате соответствующих манипуляций формируются так называемые химерные животные. Нередко оказывается, что гомозиготные по новой мутации особи (мыши с обоими мутантными аллеями) нежизнеспо­собны, и ее удается поддерживать только в гетерозиготном состоянии. Однако чаще всего популяция трансгенных мышей представляет собой смесь из жи­вотных дикого типа (гомозиготных по нормальному аллелю гена), гетерози-готных особей (имеющих один нормальный и один мутантный аллель) и го­мозиготных по мутантному аллелю. Генотип каждого животного можно опре­делить методом полимеразной цепной реакции или иным методом, подвергнув анализу небольшой кусочек ткани животного (обычно для этого отрезают кончик хвоста). Иногда гомозиготные носители нового гена внешне отлича­ются от нормальных собратьев.

Специальные молекулярно-биологические приемы должны обеспечить до­статочно надежную экспрессию новой ДНК в геноме реципиента. В против­ном случае введенный в геном фрагмент может сохраняться в латентном виде, не обнаруживая себя.

Наиболее часто эксперименты по получению искусственных мутан­тов или животных-нокаутов проводятся с целью выяснить роль в орга­низме того или иного белка, чаще всего обладающего ферментативной активностью, или белков-рецепторов клеточной поверхности. При ра­боте с нейрогенами, т.е. с генами, которые экспрессируются («работа­ют») в мозге, наибольшее число исследований проведено с выключе­нием белков-рецепторов, избирательно связывающихся с нейромедиа-торами и другими молекулами, влияющими на режим синаптической

285

 

 передачи в нейронах разных структур мозга. В настоящее время насчиты­вается много сотен мышей-нокаутов с инактивированными генами раз­ных функциональных групп, и их число продолжает расти.

Рассмотрим результаты наиболее известных исследований, в ко­торых оценивали влияние выключения нейрогенов на процессы обу­чения и памяти.

Экспериментальные схемы обучения, которые используются для тестирования запоминания у лабораторных мышей и крыс, позволя­ют с большой надежностью проанализировать влияние какого-либо фактора на краткосрочную или долгосрочную память и на процесс собственно усвоения навыка. В качестве «навыка» обычно выбирают выполнение животным простой двигательной реакции или, наобо­рот, невыполнение (торможение) такой реакции. В целях большей четкости эксперимент строят таким образом, чтобы усвоение навыка происходило при единственном сочетании условного и безусловного раздражителей. Достаточно популярны в таких исследованиях оценка синаптической проводимости гиппокампа электрофизиологическими методами и формирования пространственного навыка в тесте Морриса.

Долговременная посттетаническая потенциация. Важным модельным объектом для изучения процесса обучения стала так называемая долго­временная посттетаническая потенциация (long term potentiation, LTP).

LTP — это одно из проявлений синаптической пластичности (т.е. изменения проводимости синапсов), происходящее в результате дли­тельной бомбардировки слоя пирамидных нейронов гиппокампа (об­ласть СА1) электрическим раздражением аксонов, оканчивающих­ся на этих нейронах (т.е. искусственным путем).

Подобные эксперименты в большинстве случаев проводятся на так называемых переживающих срезах гиппокампа, помещенных в специаль­ную питательную среду, т.е. in vitro. В результате потенциации клетки гиппокампа начинают активно реагировать на раздражения, неэффек­тивные до нанесения электрической стимуляции. Для этого процесса (как и для разных форм обучения) необходим целый ряд условий:

• активация так называемых NMDA-рецепторов (т.е. белковых мо­лекул, расположенных в мембране нейронов и изменяющих ее проводимость при соединении с М-метил-О-аспартатом, ~ ве­ществом, имитирующим эффект нейромедиатора);

повышение внутриклеточного уровня ионов кальция (Са^), что в свою очередь обеспечивается определенным каскадом событий с участием системы так называемых вторичных посредников (цик­лического аденозинмонофосфата — С-АМР и др.);

• участие ряда ключевых ферментов (протеинкиназа- С, Сй^-калмо-дулинзависимая протеинкиназа IIСаМКИн тирозинкиназа).

286

Течение LTP в гиппокампе мышей-нокаутов с выключенны­ми генами, кодирующими такие белки, сильно видоизменялось, однако она полностью не исчезала. Одновременно у этих мышей было нарушено формирование пространственного навыка в тесте g Морриса.

Гистологическое исследование гиппокампа показало у них нару­шения в расположении гранулярных клеток зубчатой фасции, т.е. тех нейронов, аксоны которых образуют iipMF.

I)     Мыши с искусственной мутацией гена Со MKII нормально обу­чались навыку отыскания безопасного убежища при наличии сиг­нальных раздражителей, но не могли усвоить этот навык, когда для этого требовалось формирование пространственных представ-

В лений, т.е. «пространственной карты» (см. 3.4).

К тому же у них при ритмическом электрическом раздражении гиппо­кампа с частотой 5—10 в сек (т.е. с частотой тета-ритма, как правило, присут­ствующего в суммарной электрической активности гиппокампа при исследо­вательском поведении) LTP не наступала, в то время как при высокочастот­ном раздражении она развивалась нормально. В норме у мышей могут развиваться обе формы LTP.

Можно проанализировать, как сказывается на процессе обучения противоположное генетическое изменение — «сверхэкспрессия» како­го-либо гена. Специальными приемами можно усилить работу гена не во всем мозге, а только в определенных его участках. Такие вполне жизнеспособные животные демонстрируют поразительные видоизме­нения поведения (Mayford et al., 1995).

ез     Сверхпродукция белка NMDA-рецептора типа 2В в переднем

Е мозге мутантных мышей сопровождалась резким усилением спо-р собности к обучению в ряде тестов (так же как и усилением LTP).

Мутантные мыши превосходили контрольных по усвоению навыка «застывания» (freezing response) при тестировании после однократно­го применения удара электрического тока, и у них было более прочное запоминание этой условной реакции. Обучение в тесте Морриса у этих мышей также было более эффективным. Данные наблюдения позволя­ют сделать вывод, важный для нейрофизиологии обучения:

В     изменение эффективности NMDA-проводимости (и видимо, изменение интенсивности последующих процессов в нейроне) одинаково влияет на формирование разных навыков и, следова­тельно, представляет собой одно из универсальных звеньев в про-

С цессе обучения.

Известно, что формирование памяти — это ступенчатый процесс.

На животных разного филогенетического уровня показано, что в этом

процессе выделяются по меньшей мере две четкие стадии:

287

 

 * краткосрочная память, которая не страдает от введения веществ подавляющих синтез белка или образование молекул РНК;

* долгосрочная память — ее формирование может быть блокиро­вано введением этих веществ.

Переход от краткосрочной памяти к долгосрочной — консолида­ция сопровождается активацией генетического аппарата или экспрес­сией новых генов, которые до этого были неактивны (репрессированы).

Считается установленным, что долговременная память связана с изменениями в структуре синоптических белков. Такие изменения осу­ществляются в результате целого каскада событий, принципиальным моментом которых является фосфорилирование, т.е. присоединение радикала неорганического фосфата к целому ряду белков. Этот биохи­мический процесс напрямую связан с изменениями в синапсах при их активации, он универсален и, как говорилось выше, принципи­ально сходен у животных разного уровня эволюционного развития. Выключение из каскада одного из его звеньев (путем «нокаута» соот­ветствующего гена или, наоборот, усиления его работы) дает воз­можность оценить изменения в процессах собственно «следа» памяти.

Одним из наиболее известных примеров таких изменений у мы­шей-нокаутов является выключение гена, кодирующего белок CREB (Bourchaladze et al., 1994). CREB (c-AMP response element binding protein) относится к так называемым факторам транскрипции, или регулятор-ным белкам.

Е     Мыши-нокауты по гену CREB достаточно эффективно обуча­лись и хорошо запоминали навык в интервалах «работы» краткосроч­ной памяти (30 и 60 мин после сеанса обучения). Если же сохранение навыка тестировали в сроки, когда должна «работать» долгосрочная память (через 2 ч), то его воспроизведение было сильно нарушено.

Кроме этого, долговременная потенциация (LTP) у мышей с от­сутствием гена, кодирующего белок CREB, развивалась аномально в тех же временных пределах. Через 2 ч после воздействия, вызывающего LTP, в срезах гиппокампа таких животных все ее проявления уже от­сутствуют, тогда как в срезах мозга нормальных мышей сохраняются.

Совокупность данных, полученных на животных разного уровня развития, позволяет в настоящее время считать, что экспрессия транс­крипционного фактора CREB, который активирует гены, прямо свя­занные с формированием памяти, и ряда других генетических эле­ментов является важным этапом записи следа памяти в мозге.

9.6. Психогенетика человека и генетика поведения животных

В этом разделе пойдет речь о том, как исследуется роль генотипа в формировании высших психических функций человека. Этот краткий

288

очерк необходим, по нашему мнению, для того, чтобы можно было увидеть — изменчивость даже интеллекта человека имеет генетический компонент. Как между интеллектом человека и мыслительными способ­ностями животных существуют большие различия, но существуют и черты сходства, так и в анализе генетических основ интеллекта челове­ка можно найти не только черты различия, но и черты сходства с зако­номерностями наследования поведения животных.

Трудности, успехи и достижения генетики поведения животных, особенно в части исследования способности к обучению и других слож­ных проявлений их психики, разделяла в течение всего XX в. и генетика поведения человека — направление, которое, по мнению авторитетных специалистов, правильнее называть психогенетикой,

Индивидуальные особенности в проявлении любых признаков, в частности признаков, связанных с функцией ЦНС, складываются из двух главных компонентов: особенностей генотипа индивида и тех влияний, которые оказывают на него внешние условия на всех этапах онтогенеза.

О возможности передачи особенностей поведения от родителей к потомкам человеку было известно давно, причем не только из наблю­дений за сельскохозяйственными и домашними животными, но и на основании «собственного опыта». Люди видели, что семейное сход­ство между родителями, детьми, внуками, братьями и другими род­ственниками обнаруживается не только во внешности и физических данных, но и в характере, темпераменте, привычках и пристрастиях, особенностях мимики и движений, в склонности к некоторым психи­ческим заболеваниям.

Каково же соотношение влияний среды и наследственности в формировании личности человека? Что понимать под «влиянием сре-довых условий», когда речь идет о таких сложных психологических признаках, как, например, темперамент? Как можно изучать эти слож­ные феномены?

На эти и на ряд других вопросов отвечает возникшее в начале XX в. и активно развивающееся в последние десятилетия направление, полу­чившее в русской литературе название «психогенетика». Это научное направление, которое, как и генетика поведения, развивается на базе психологии, психофизиологии, генетики и биологии развития2.

В наши задачи не входит изложение основ психогенетики, мы ог­раничимся лишь упоминанием ее нескольких положений, которые

2 В 1999 г. увидел свет учебник «Психогенетика» (Равич-Щербо и др., 1999), который представляет собой не только ценнейшее учебное пособие, но и совре­менную сводку по генетическим исследованиям психики человека. В книге даны основные сведения по общей генетике, методам психо генетики, подходам к оценке относительной роли генотипа и среды в изменчивости психологических призна­ков, по генетической психофизиологии и возрастным аспектам психогенетики.

289

19-5198

 

 важны в связи с проблемой генетических основ когнитивной деятель­ности животных.

Использование методов анализа родословных, близнецового ме­тода и др. генетических методов позволяет определять вклад генети­ческого и средового компонентов в изменчивость признаков, связан­ных с характеристикой интеллекта человека. Практически не суще­ствует достаточно общепризнанного определения понятия «интеллект». К характеристикам интеллекта некоторые исследователи относят лишь такие «компоненты высшего уровня», как способность к решению прин­ципиально новых задач (т.е. тех, для которых нет готового решения), способность к формированию понятий и оперированию ими (см. 1.4). Другие толкуют это понятие расширительно и относят к показателям интеллекта восприятие, внимание, скорость реакции и др. Как и в гене­тике поведения, для психогенетики важное значение имеет выбор признака для анализа. Поскольку интеллект, по мнению большинства исследователей, предполагает наличие некоторой совокупности ког­нитивных способностей, для его измерения требуется использование комплексных оценок.

Основной методический подход при исследовании роли генотипа и среды в формировании когнитивных функций человека традицион­но состоит в предъявлении испытуемым (с разной степенью родства) наборов тестов (или «вопросников»). Однако любая тестовая оценка отражает только результат некоторого процесса решения данной за­дачи, а пути ее решения (и психологические механизмы) могут быть совсем разными. Поиск тестов, которые возможно более точно описы­вали бы интеллектуальные показатели человека,— это одна из сложных проблем психологической диагностики и, как следствие, психогенетики.

Комплексные оценки когнитивных функций человека дают некий набор показателей, интерпретация которых в большой степени зави­сит от теоретической платформы исследователей. Часть ученых постули­рует существование так называемого «общего интеллекта» (общей ла­тентной переменной, или фактора, который определяет показатели большинства тестов). Другие полагают, что интеллект есть сумма так называемых первичных умственных способностей пространственной, перцептивной, вербальной, мнемической, способности к беглой речи и логическому рассуждению. Принято считать, что последние, в свою очередь, находятся в корреляции с «общим интеллектом».

Генетические влияния отвечают примерно за 50% изменчи­вости признаков, характеризующих когнитивные способности (от 40 до 80% различий между людьми по когнитивным способнос­тям объясняется различиями, связанными с генетической измен-В чивостью).

Приведем только один пример из этой области (табл. 9.1), кото­рый показывает, что величины коэффициентов корреляции между

290

показателями ряда психологических тестов на «интеллект» у людей с разной степенью родства сильно различаются. Горизонтальные линии в столбце «Коэффициенты корреляции» располагаются под величи­нами этих индексов, полученных в разных исследованиях. Таким об­разом, длина такой линии характеризует разброс данных, получен­ных в разных работах для определенной категории родственников. Как мы видим, степень сходства в показателях этих тестов наиболее высо­ка у монозиготных близнецов даже в случаях, когда они росли врозь. Она значительно выше, чем у всех других групп родственников. Из этой сводки также видно, что общность (или различия) средовых ус­ловий (выросшие врозь — выросшие вместе) также влияет на эти показатели не только у близнецов, но и у сибсов.

9.1. Корреляции когнитивных характеристик испытуемых с разной степе­нью родства и сходства условий среды

(из Равич-Щербо и др., 1999; по Plomin, DeFries, 1980).

Одна из задач психогенетики (как и в генетике поведения) — ана­лиз средовой «составляющей» общей изменчивости признаков, по ко­торым судят о степени развития интеллекта человека. Показано, напри­мер, что общесемейная среда, т.е. параметры среды, одинаковые для членов каждой семьи, но варьирующие между семьями, объясняет 10— 40% межиндивидуальной изменчивости по признаку «общий интеллект».

291

 

 Истинные психогенетические исследования показывают, в ка­кой степени и с помощью каких психофизиологических механиз­мов генетически детерминированные особенности личности и/или интеллектуальные способности человека (например, особенности темперамента, степень развития специальных способностей, вер­бальный интеллект и др.) могут быть ответственными за стиль поведения и деятельности.

В то же время сложные аспекты личности, определяющие, напри­мер, этичность или неэтичность поступков, асоциальность поведения и т.п., нельзя напрямую связывать с генотипическими особенностями данного индивида и даже с генетически детерминированными особен­ностями влияния на него определенных средовых факторов. Эти аспек­ты личности связаны с существованием человека в социуме и с дей­ствием на него негенетических социальных факторов.

В13     Генетические, а тем более расовые или этнические особенно­сти психики и поведения разных групп людей должны трактовать-в ся с особенно большой осторожностью.

Генетическая психофизиология как раздел психогенетики занимается проблемами генетической обусловленности особенностей реакций нервной системы человека на внешние (или внутренние) стимулы. Речь идет об исследовании большого числа показателей ра­боты вегетативной нервной системы, ЭКГ, ЭЭГ, кожно-гальвани-ческой реакции и др.

Многие характеристики суммарной ЭЭГ, а также вызванных по­тенциалов в ответ на разные внешние раздражения показывают зна­чительную долю генетической изменчивости. Показано, например, что амплитуда потенциала лобно-теменных отделов мозга, вызванно­го выполнением простого действия — нажатия пальцем на кнопку, имеет разную «структуру» изменчивости в зависимости от того, про­исходит это нажатие само по себе или как отражение прогностичес­кой деятельности. Иными словами, «вклад» генетической компонен­ты в изменчивость амплитуды этого потенциала оказывается суще­ственно выше в случае «осознаваемое™» этого действия.

РЕЗЮМЕ

Приведенный материал демонстрирует, с одной стороны, ме­тодологическое сходство проблем, которые стоят перед пси­хогенетикой человека и генетикой поведения животных, а с другой — показывает, что генетические основы интеллекта (когнитивных способностей) — будь это человек или экспе­риментальное животное — базируются на широкой биологи­ческой основе, изучение которой может дать человеку бо­лее глубокие знания о своей природе. Современная генетика поведения и нейрогенетика, воору­женные молекулярно-биологическими методами, позволя­ют реально выявлять участие определенных генетических элементов в ассоциативном обучении и когнитивных про­цессах. В настоящее время существуют данные о молекулярно-гене-

тических механизмах только относительно простых проявле­ний психики животных — ассоциативном и пространственном обучении. Однако есть экспериментальные свидетельства того, что и более сложные явления психики животных, напри­мер способность к экстраполяции, также находятся под кон­тролем генотипа. Более детальное исследование этой про­блемы — дело будущего.

1. Какими методами исследуют роль генотипа в формировании

поведения?

2. Существуют ли мутации, влияющие на строение и/или биохи­мию мозга?

3 С какими различиями в строении мозга могут быть связаны раз-личия в ассоциативном обучении и обучении пространствен­ным навыкам?

292

 

 Заключение

Приведенный материал свидетельствует, что у животных действи­тельно существуют зачатки мышления как самостоятельная форма ког­нитивной деятельности. Доказано, что они имеют особую природу и по своим механизмам отличаются от обучения сходным навыкам. Эле­менты мышления проявляются у животных в разных формах, и диапа­зон его проявлений тем шире, чем сложнее по структуре и функциям их мозг. Главная особенность мышления в том, что оно обеспечивает способность животного принимать новое адекватное решение при первой же встрече с необычной ситуацией.

На протяжении XX века представления о зачатках разума у живот­ных постоянно обсуждались и пересматривались. К настоящему време­ни голоса скептиков звучат все слабее. Многообразие методических при­емов позволило выявить тот простейший уровень рассудочной деятель­ности, который доступен и низкоорганизованным животным. Можно считать установленным, что даже они способны решать возникшие перед ними задачи только на базе ранее усвоенной сходной информации и специально сформированных навыков, тогда как у более «продвину­тых» представителей млекопитающих и птиц диапазон ситуаций, в кото­рых они могут проявлять эту способность, несоизмеримо более широк.

Способность рептилий, а также наиболее примитивных млекопи­тающих и птиц решать простейшие логические задачи имеет особое значение для проблемы возникновения мышления, т.к. свидетельству­ют, что его зачатки возникли на достаточно ранних этапах эволюции.

Разнообразие форм рассудочной деятельности даже у животных, не относящихся к приматам, позволило Л. В. Крушинскому в 70-е годы высказать гипотезу о связи уровня развития вида и степени сложности свойственного ему элементарного мышления, которая предвосхитила современное развитие этого направления науки.

Одна из задач исследований элементарного мышления животных — показать, какой степени сходства достигают наиболее сложные когни­тивные функции у человекообразных обезьян и человека, действитель­но ли между ними существует резкая грань и даже непроходимая про­пасть. Современная наука заставляет ответить на этот последний вопрос отрицательно: в способностях антропоидов и человека отсутствует резкий разрыв и наиболее сложные психические функции человека в той или иной степени представлены у шимпанзе.

Высокий уровень интеллектуальных способностей, проявленный при решении разного рода лабораторных тестов, реализуется и в способности антропоидов к освоению и адекватному использованию языков-посредников. Это открытие подтвердило представления Л. А. Ор-

294

бели, О. Келера, Р. Иеркса, Л. С. Выготского и других о том, что на ранних этапах эволюции существовали промежуточные стадии в раз­витии сигнальных систем животных.

Особенно сложны проявления мышления животных в социаль­ной жизни шимпанзе. Л. В. Крушинский еще в 60-е годы сформулиро­вал представление о том, что высокий уровень развития рассудочной деятельности определяет характер и сложность структуры сообществ. Новейшие данные убедительно подтвердили его правоту. Современ­ные наблюдения сообществ шимпанзе и горилл в природе позволили обнаружить, что уровень их взаимодействий более сложен, чем это можно было предположить еще несколько десятилетий назад. В своих социальных контактах шимпанзе способны ориентироваться не толь­ко на уже состоявшиеся акты поведения сородичей, но также и на их скрытые намерения. Это подтверждает наличие у шимпанзе не толь­ко способности к самоузнаванию (еще недавно такая возможность даже не допускалась), но и умения поставить себя на место сороди­ча, оценить его намерения (theory of mind). Шимпанзе умеют мыс­ленно «проиграть» возможный ход событий, обмануть партнера или заставить его вести себя так, как им это нужно. Эта сфера их интел­лектуальных способностей получила даже особое название — «маки­авеллевский ум».

Тем не менее, сколь бы ни были высоки интеллектуальные способ­ности антропоидов, речь может идти только о зачатках мышления, ведь никто из них не вышел за рамки возможностей 2,5-летнего ребенка.

Вместе с тем современный язык описания «социальных знаний» высших животных временами может заставить читателя заподозрить их авторов в возвращении к антропоморфизму, к простому приписыва­нию обезьянам человеческих свойств. Следует, однако, заметить, что логика построения современных экспериментов, а также разносторон­ние подходы к анализу их результатов учитывают такую «опасность»:

они строятся на многократно проверенном материале объективных это-логических наблюдений и промоделированы в лабораторных условиях. Это позволяет утверждать, что обвинения в антропоморфизме непра­вомерны.

Примечательно, что в процессе развития исследований элемен­тарного мышления происходило закономерное и необходимое изме­нение методологии. В середине XX века на смену простой констатации фактов и качественным описаниям пришел эксперимент с объектив­ной регистрацией и скрупулезно точными количественными оценка­ми всех параметров поведения. В конце XX века логика исследований вернула ученых к необходимости проводить не только количествен­ный, но и качественный анализ наблюдаемых явлений, заставила учи­тывать результаты природных наблюдений. Большая заслуга в возвра­щении исследований элементарного мышления животных в «биоло­гическое русло» принадлежит этологии, которая позволяет более

295

 

 надежно отличать истинно разумные акты от внешне «осмысленных» видоспецифических (инстинктивных) действий.

Представление о том, что животным доступны разумные поступки, распространено достаточно широко, и именно оно явилось одним из стимулов, побуждавших к исследованию этой проблемы. Однако при трактовке даже самых убедительных на первый взгляд свидетельств оче­видцев надо помнить о необходимости применения «канона Ллойда Моргана», т.е. анализировать, не лежат ли в основе предположительно разумного акта какие-то более простые механизмы. Тем не менее пре­небрегать даже случайными наблюдениями было бы неправильно. Та­кой точки зрения придерживается, в частности, Дж. Гудолл (1992), ко­торая писала: «Умное» поведение шимпанзе области Гомбе наблюдали многократно. Но как часто приходится иметь дело с рассказами случай­ных очевидцев! И хотя я твердо уверена, что такие рассказы при их осторож


Перейти в форум

Категория: Учебное издание | Добавил: Admin (18.08.2007) | Автор: Зоя Александровна Зорина Инга Игоре
Просмотров: 1563 | Рейтинг: 0.0/0 |
Ссылки на документ, для вставки на форум или к себе на страницу.
Для форума BB-Code
Ссылка

»Форма входа
»Календарь
»Спонсор
Достойный заработок в интернете. Регистрируйтесь и не пожалеете! Я уже в этом убедился, советую и Вам! Удачи!!!

Дополнительный зароботок в интернете
»Поиск
»Спонсор
»Друзья сайта
  Все материалы Книги, Статьи, Рефераты, Дмпломы, находящиеся на сайте Psychologiya.ucoz.RU Администрация\Пользователи проекта использовали обратные ссылки при использовании материалов из других источников, или указывали на автора.Использование материалов сайта ПРИВЕТСТВУЕТСЯ, Только с обратной АКТИВНОЙ ссылкой на Сайт.
Получить свой бесплатный сайт в UcoZ Psychologiya.ucoz.RU © 2007- Получить свой бесплатный сайт в UcoZХостинг от uCoz